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Outline

» Background and the Problem

o Gram matrix (G-matrix)

o The problem we want to solve
= Approximated G-matrix Scheme
= How does Hadoop Work?
= Implementation and Evaluation
= Conclusion and Future Work
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What if the data set is extremely larger

» Partition the dataset into different clusters
based on similarity measurement

» Compute the sub-matrix

=

Original Full G-matrix

In every cluster

Approximated G-matrix




Approximated G-matrix Scheme

Using locality preserving properties of Locality
Sensitive Hashinguy to approximate the original
gram matrix

Parallelize the program on cluster using Hadoop
Map-reduce framework



‘ Approximated G-matrix Scheme (cont.)
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low does Map-Reduce Work?

—

» An example: classify the words in the following
nursery rhyme with respect to the parity of word
Iength

- e - e

=70 Ie twmkle _ :

o~ ’.faf': low | wonder what you are

4 Up above the world so high
o Like a diamond in the sky




odd: Twinkle, twinkle
[Twinkle, twinkle, little star} <even: little, star>\

[How | wonder what you are} odd: How, you, are,
<even: what, wonde

[Up above the world so high

<even: Up, so, high >
<odd: the, world, above’>

How does Map-Reduce Work?

How, you, are, I,

the, world, above,
"a, diamond, the, sky>

<odd: Twinkle, twinkle,

J

<odd: a, diamond, the, sky>

[Like a diamond in the sky]\
<even: Like, in> /J

Map: ——
Reduce:— —

.

<even: little, star,
what, wonder,
Up, so, high,
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Look into Hadoop  @i=pimp

» Organization

o Master is called JobTracker, slaves called
TaskTracker




Look into Hadoop (cont.)

Rack, Data centre Determination

datacenter:
SFU

rack:Bugaboo

o The path of machine A: /SFU/Bugaboo/A
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Look into Hadoop (cont.)

How Input Data is Split and Distributed?

o Class InputSplit defines how to do the split of an input
file.

2 In most cases Class FilelnputFormat and its subclass
will use 64MB (recommended) to split input file.

o Function computeReplicationWorkForBlock() in Class
FSNamesystem does the replication (default: 3 copies
per block).

o one copy on the local node, one copy on a node In the
same rack, and the third copy on a node which is
outside the rack.
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Look 1into Hadoop (cont.)

Task Scheduling

o Task assignment is initiated by a slave (asks for a
task), then master decides which task to schedule and
responses.

o The Job Tracker knows which node contains the data,
and which other machines are nearby. If the work
cannot be hosted on the actual node where the data
resides, priority is given to nodes in the same rack,
then machines in the same datacenter for the nearest
located mapping tasks (data split).
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Look 1into Hadoop (cont.)

<assignTasks()>

.

obtainNewLowj> obtainNewNonLocalMapTask()

i findNewMapTask
findNewMapTask
(maxLevel = 2 (by default)) (NON—LOCAL:—?S‘CHE—LEVEL

schedule node-local/ schedule
rack-local tasks off-switch tasks
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Implementation Using Hadoop

Step 1. Mapping. For every 64-dimension vector,
do LSH in mapping part, the LSH method used is
Random Projection from www’07. The output

pair of this step is <bucketNumber, vectorindex>.

a[i]= vector[dim_]>=threshold ?1:0,foreveryie[0,m-1]

dim_ and threshold are randomly generated

m=|
BucketNumber = Z ali]-2'

=0

Which is equal to concatenating these binary a[i] bits together. In this way, the maximum

number of buckets is 2"
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Implementation Using Hadoop

Step 2: Hadoop merges the vectors which share the
same bucket _number together, into a list.

Step 3: Reducing. For those vectors hashed into the
same bucket, compute the similarity value between
every two vectors to form the sub-Gram-matrix.
Further, use clustering method.

o Method of Simlarity Computing

For 64-dimension vector a[] and b[], and pre-set weight[]

63
- weight[i]-(ali]-b[i])?
SimValue=e =

15



Experiment Setup

Single machine: Intel® Xeon® Processor E5410
(12M Cache, 2.33 GHz, 1333 MHz FSB), 16 GB
DRAM. GCC 4.1.3

Cluster: six machines, each of which is Intel®
Core™2 Duo Processor E6550 (4M Cache, 2.33
GHz, 1333 MHz FSB), 1 GB DRAM. Hadoop
0.20,JDK 1.6.0 10

Dataset property: 64 dimension, the numerical
range of every component of the vector is [0,1]
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Evaluation Methods

Hashing results comparison between cluster and
single machine

Frobenius norm (Fnorm)
n

: m 2
0 F.or m-by-n matn).(, Enorm = \/ZZ‘a‘j‘
Affinity Propagation =LA

o An unsupervised data clustering algorithm

o Basic idea: given a set of data points with unknown cluster
structure, the objective is to find a subset to serve as
cluster exemplars.

Approximated G-matrix computing time
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Hashing Results Comparison

Procedure

o Write the hashing results into files

o Use the same hashing parameter (hashing iteration 3, 6) and
dataset (1K, 8K, 64K, 512K) to do hashing in cluster and single
machine code.

o Sort the vector indices in every bucket (for efficiency)

o Count the number of same vectors (N_same) in the
corresponding bucket in cluster and single machine results.

o take the total of the two bucket size, and then subtract by 2*
N_same, therefore, we get how many different vectors are in the
same bucket

Result

o The two implementations get exactly the same results, as
expected.
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Frobenius Norm Comparison

» Comparison between Approximated G-matrix and
Original matrix
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Attinity Propagation Comparison

The difference between Approximated and original matrix
Is small (5%-12% difference when 16 buckets)

Met Similarity Hatio Compared Against Brute-Force
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Approximated G-matrix computing time

» Time comsumed grows sublinearly with the growth of
data set size.

Cormputing Time Comparizon
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Conclusion and Future Work

High precision (6%-12%difference) can be achieved in
Gram Matrix approximation using Locality Sensitive
Hashing (LSH)

o Frobenius norm (from matrix property side)

o Clustering error (Net Similarity, from application side)

LSH and cluster enables the parallelization of Gram matrix
approximation and reduction of computing time

Experiment on large scale cluster (Westgrid) to do
optimization, further time reduction expected with
guaranteed precision
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Thank you

Questions and Suggestions ( on
deployment of cluster with 2304 cores)
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