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Background
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What if the data set is extremely large?
Partition the dataset into different clusters 
based on similarity measurement
Compute the sub-matrix in every cluster
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Approximated G-matrix Scheme

Using locality preserving properties of Locality 
Sensitive Hashing[1] to approximate the original 
gram matrix

Parallelize the program on cluster using Hadoop
Map-reduce framework
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Approximated G-matrix Scheme (cont.)
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How does Map-Reduce Work?

An example: classify the words in the following 
nursery rhyme with respect to the parity of word 
length

Twinkle, twinkle, little star
How I wonder what you are
Up above the world so high
Like a diamond in the sky
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How does Map-Reduce Work?

Twinkle, twinkle, little star

How I wonder what you are

Up above the world so high

Like a diamond in the sky

<odd: Twinkle, twinkle>
<even: little, star>

<odd: How, you, are, I>
<even: what, wonder>

<even: Up, so, high >
<odd: the, world, above >

<even: Like, in>
<odd: a, diamond, the, sky>

<odd: Twinkle, twinkle,
How, you, are, I,

the, world, above,
a, diamond, the, sky>

<even: little, star,
what, wonder,
Up, so, high ,

Like, in >

Map:
Reduce:
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Look into Hadoop

Organization 

Master is called JobTracker, slaves called 
TaskTracker
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Look into Hadoop (cont.)

Rack, Data centre Determination 

The path of machine A: /SFU/Bugaboo/A
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Look into Hadoop (cont.)

How Input Data is Split and Distributed?
Class InputSplit defines how to do the split of an input 
file. 
In most cases Class FileInputFormat and its subclass 
will use 64MB (recommended) to split input file. 
Function computeReplicationWorkForBlock() in Class 
FSNamesystem does the replication (default: 3 copies 
per block).
one copy on the local node, one copy on a node in the 
same rack, and the third copy on a node which is 
outside the rack.
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Look into Hadoop (cont.)

Task Scheduling
Task assignment is initiated by a slave (asks for a 
task), then master decides which task to schedule and 
responses. 
The Job Tracker knows which node contains the data, 
and which other machines are nearby. If the work 
cannot be hosted on the actual node where the data 
resides, priority is given to nodes in the same rack, 
then machines in the same datacenter for the nearest 
located mapping tasks (data split).
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Look into Hadoop (cont.)

assignTasks()

obtainNewLocalMapTask() obtainNewNonLocalMapTask()

findNewMapTask
(maxLevel = 2 (by default))

findNewMapTask
(NON_LOCAL_CACHE_LEVEL

= -1)

schedule node-local/
rack-local tasks

schedule 
off-switch tasks
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Implementation Using Hadoop

Step 1: Mapping. For every 64-dimension vector, 
do LSH in mapping part, the LSH method used is 
Random Projection from www’07[2]. The output 
pair of this step is  <bucketNumber, vectorIndex>.
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For 64-dimension vector a[] and b[], and pre-set weight[]

Implementation Using Hadoop

Step 2: Hadoop merges the vectors which share the 
same bucket_number together, into a list.
Step 3: Reducing. For those vectors hashed into the 
same bucket, compute the similarity value between 
every two vectors to form the sub-Gram-matrix. 
Further, use clustering method.

Method of Simlarity Computing
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Experiment Setup

Single machine: Intel® Xeon® Processor E5410 
(12M Cache, 2.33 GHz, 1333 MHz FSB), 16 GB 
DRAM. GCC 4.1.3
Cluster: six machines, each of which is Intel®
Core™2 Duo Processor E6550 (4M Cache, 2.33 
GHz, 1333 MHz FSB), 1 GB DRAM. Hadoop
0.20, JDK 1.6.0_10
Dataset property: 64 dimension, the numerical 
range of every component of the vector is [0,1]
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Evaluation Methods

Hashing results comparison between cluster and 
single machine
Frobenius norm (Fnorm)

For m-by-n matrix,
Affinity Propagation [3]

An unsupervised data clustering algorithm
Basic idea: given a set of data points with unknown cluster 
structure, the objective is to find a subset to serve as 
cluster exemplars.

Approximated G-matrix computing time 
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Hashing Results Comparison
Procedure

Write the hashing results into files
Use the same hashing parameter (hashing iteration 3, 6) and 
dataset (1K, 8K, 64K, 512K) to do hashing in cluster and single 
machine code.

Sort the vector indices in every bucket (for efficiency)
Count the number of same vectors (N_same) in the 
corresponding bucket in cluster and single machine results. 
take the total of the two bucket size, and then subtract by 2* 
N_same, therefore, we get how many different vectors are in the 
same bucket

Result

The two implementations get exactly the same results, as 
expected. 
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Frobenius Norm Comparison
Comparison between Approximated G-matrix and 
Original matrix
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Affinity Propagation Comparison
The difference between Approximated and original matrix 
is small (5%-12% difference when 16 buckets)
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Approximated G-matrix computing time 

Time comsumed grows sublinearly with the growth of 
data set size.
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Conclusion and Future Work

High precision (6%-12%difference) can be achieved in 
Gram Matrix approximation using Locality Sensitive 
Hashing (LSH)

Frobenius norm (from matrix property side) 

Clustering error (Net Similarity, from application side) 

LSH and cluster enables the parallelization of Gram matrix 
approximation and reduction of computing time

Experiment on large scale cluster (Westgrid) to do 
optimization, further time reduction expected with 
guaranteed precision
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Questions and Suggestions ( on 
deployment of cluster with 2304 cores)

Thank you


