
Page 1 of 10

Peer-to-Peer Proxy Cache Server

Version 0.01, September 21, 2007
Document Author(s):

Project Sponsor:

1 Revision History .. 1

2 Introduction... 2

3 Overview .. 2

4 Detailed Design.. 4

4.1 P2P application message format... 4
HTTP Client Request Headers.. 6

4.2 Software Modules .. 7
4.2.1 Connection Manager... 8
4.2.2 Parser .. 8
4.2.3 Cache Manager ... 9
4.2.4 Cache .. 9
4.2.5 Disk Manager ... 10
4.2.6 Util, Error Handler and, Configure... 10

5 Todos.. 10

6 Reference ... 10

1 Revision History

Ver. Date Author Change Description
0.01 9/21/2007 behroozn Initial draft

Page 2 of 10

2 Introduction

Peer-to-peer (P2P) systems currently generate a major fraction of the total Internet traffic
accounting for as much as 60-70% of the traffic in some Internet Service Providers (ISPs).
Furthermore, it is expected that the amount of P2P traffic will even increase in the future.
We explore the potential of deploying proxy caches in different Autonomous Systems
(ASs) with the goal of reducing the cost incurred by Internet service providers and
alleviating the load on the Internet backbone. We conducted an eight-month measurement
study to analyze the P2P characteristics that are relevant to caching, such as object
popularity, popularity dynamics, and object size. Our study shows that the popularity of
P2P objects can be modeled by a Mandelbrot-Zipf distribution, and that several workloads
exist in P2P traffic. Guided by our findings, we develop a novel caching algorithm for P2P
traffic that is based on object segmentation, and proportional partial admission and
eviction of objects. Our trace-based simulations show that with a relatively small cache
size, less than 10% of the total traffic, a byte hit rate of up to 35% can be achieved by our
algorithm, which is close to the byte hit rate achieved by an off-line optimal algorithm
with complete knowledge of future requests. Our results also show that our algorithm
achieves a byte hit rate that is at least 40% more, and at most 200%, the byte hit rate of the
common web caching algorithms. Furthermore, our algorithm is robust in the face of
aborted downloads, which is a common case in P2P systems.

Here, we include the usecase diagram for the p2p proxy cache system, the class diagram
for the software architecture and finally descriptions on modules and data structures. In
the rest of this document, we first examine give an overview on the system and its
responsibilities. Then, it is followed by the design details.

3 Overview

The usecase diagram which is shown in Fig. 1 described the behavior of the system. In
general, the system consists of three functional level, (1) connection manager, (2) traffic
identifier, and (3) cache manager. In the following paragraphs, these parts are described in
detail.

The connection manager is responsible for listening to the incoming connections, pass the
data to the traffic identifier module, get the response from traffic identifier module, and
finally encapsulate the data within network packets and forward them to the appropriate
destination. It is also responsible for the connections on the opposite direction –data
received from external network. Ideally, the connection manager should work
transparently. A transparent proxy (or correctly naming “intercepting proxy”), is a
combination of a proxy server and a gateway. All the connections by the clients should
pass through the gateway and gateway automatically forwards these connections to the
proxy server. In this case all the connections would be forwarded to the proxy cache
without any configuration or knowledge on the client side. However, in this release (v.01)

Page 3 of 10

the cache server is not intercepting. Thus, the p2p client should be configured in order to
use our proxy server. Most of the p2p client applications can be easily configured. In our
experiments we used Limewire [??], an open source p2p application written in Java which
works in Gnutella network.

The traffic identifier receives the data from the connection manager and first decides if
this data is known p2p traffic or not. The p2p traffic recognition can be done in three
ways. The earliest approach to this problem is mapping of known ip-addresses or port
numbers. Second approach use application signature analysis. Third approach which is
introduced recently is by considering the p2p traffic behavior pattern. For example, the
p2p sessions are usually established for a long time interval, they transfer large amount of
data and, they start with a TCP handshaking following by a several UDP connections. In
this release, our traffic identifier module uses the application signatures in order to
recognize the p2p traffic. This approach shows more promising results in compare with
the first approach and it can be implemented more easily compare to the third approach
which is fairly new and need more research.

At last, the cache manager gets a unique identifier (UID) for the requested file range and
searches its database to find out if it already stores the whole or any part of the file on the
disk. In case of a hit the file will be served to the traffic identifier. The traffic identifier is
also responsible to let the cache manager knows about the downloaded segments. In this
case if the cache manager decides, based on some replacement policies, to store the file, it
can get the file from the traffic identifier module.

Figure 1: p2p proxy cache component diagram

Page 4 of 10

4 Detailed Design

We present detailed design that includes data structure, functions and, operations in this
section.

4.1 P2P application message format

The Gnutella protocol [??] use several messages in order to make communication among
the peers. We choose the Gnutella protocol first because its one of the top three most
popular p2p networks and second, it is an open-source protocol. After bootstrapping,
handshaking and, sending ping and pong messages, a client can send a query message in
order to search for one or more keyword(s). This query message will propagate through
the Gnutella overlay network and if any of the peers have a file which its properties match
part of the query, a query hit message will be generated and will be sent back to the
requested client.

Payload of query and query hit messages are shown in tables below. Query and query hit
messages usually does not contain enough information for the caching purpose, because
they only have a few keywords and does not address a file precisely. The requested file
can be identified later on by the requester. The requester received several query hit
messages and will decide to download some of these files by sending an HTTP download
message. This download message contains enough data for the cache server. A typical
client request message can be seen in the following.

Page 5 of 10

A typical query message payload:

Bytes Field name Description

0-1
Minimum
Speed (Flags)

The minimum speed (in kb/second) of servants that should respond
to this message. A servant receiving a Query message with a
Minimum Speed field of n kb/s SHOULD only respond with a
Query Hit if it is able to communicate at a speed >= n kb/s.

2-
Search
Criteria

This field is terminated by a NUL (0x00). See section 2.2.7.3 for
rules and information on how to Interpret the Search Criteria

Rest
Extensions
Block

OPTIONAL. The rest of the query message is used for extensions to
the original query format. The allowed extension types are GGEP,
HUGE and XML (see Section 2.3 and Appendixes 1 and 2).

If two or more of these extension types exist together, they are
separated by a 0x1C (file separator) byte. Since GGEP blocks can
contain 0x1C bytes, the GGEP block, if present, MUST be located
after any HUGE and XML blocks.

A typical query hit message payload:

Bytes Field
name

Description

0
Number of
Hits

The number of query hits in the result set.

1-2 Port
The port number on which the responding host can accept incoming
HTTP file requests. This is usually the same port as is used for
Gnutella network traffic, but any port MAY be used.

3-6 IP Address
The IP address of the responding host. Note: This field is in big-endian
format.

7-10 Speed The speed (in kb/second) of the responding host.

11- Result Set
A set of responses to the corresponding Query. This set contains
Number_of_Hits elements.

x
Extended
QHD

This block is not strictly required, but strongly recommended. It is
sometimes called EQHD, or (incorrectly) just QHD.

x
Private
Data

Undocumented vendor-specific data. This field continues till the
servent Identifier, which uses the last 16 bytes of the message.

Last
16

Servent
Identifier

A 16-byte string uniquely identifying the responding servent on the
network. This SHOULD be constant for all Query Hit messages
emitted by a servent and is typically some function of the servent's
network address. The servent Identifier is mainly used for routing the
Push Message.

Page 6 of 10

HTTP Client Request Headers

Header Status Usage Example

Host:
Recommended
(mandatory in
HTTP/1.1)

Public address of the HTTP server,
as used by the client

Host:
 192.0.2.1:6346

User-Agent:

Mandatory in
Gnutella
(recommended in
HTTP)

The user agent (for the client only)

User-Agent:
 LimeWire/4.8.2
(Pro)
User-Agent:

BearShare/2.9.1

Connection:
keep-alive

Optional

Indicates to a HTTP/1.0 server to
keep the connection persistent. In
absence of this request header, the
client MUST close itself the
connection after receiving the
response, if the server is HTTP/1.0,
and returns Content-Length
and/or Request-Range headers,
and has not already closed the
connection. Recommended only for
HTTP/1.0-only clients that may
perform multiple successive
requests to the same server.

Connection:
keep-alive

Connection:
close

Optional

No effect on most HTTP/1.0
servers. Indicates to a HTTP/1.1
server that a persistent conection is
not needed. A HTTP/1.1 server will
not close the connection itself, but
will indicate to the client to close
the connection after parsing the
server response.

Connection:
close

Range:

Mandatory with
some Gnutella-
based servers
(optional in
HTTP)

Requested range
Range:
bytes=4932766-
5066083

X-Gnutella-
Alternate-
Location:

Recommended
Known alternate locations for the
file (HUGE extension)

(see HTTP Server
Response Headers)

X-Alt: Recommended
Replacement for X-Gnutella-
Alternate-Location.

(see HTTP Server
Response Headers)

X-Features: Optional
Indicates support of the listed
features.

(see HTTP Server
Response Headers)

Page 7 of 10

A request captured by our cache server listening on a Limewire client is like this:

GET /uri-res/N2R?urn:sha1:I63A6CQTDPN2GDYY3HLTEHZIJ IO6WOUU HTTP/1.1
HOST: 75.28.136.191:26265
User-Agent: LimeWire/4.12.6
X-Queue: 0.1
X-Gnutella-Content-URN: urn:sha1:I63A6CQTDPN2GDYY3H LTEHZIJIO6WOUU
Range: bytes=262144-393215
X-Features: queue/0.1
X-Downloaded: 225352

ADD SOME DETAIL ON THIS.

4.2 Software Modules

In this section we describe the software modules and major data structures. Fig. 2 gives a
high level on the main classes and the relations between them. The diagram will have
more detail as we proceed in the coding. In the following subsections we described each
of these classes in detail.

Figure 2: p2p proxy cache class diagram

Page 8 of 10

4.2.1 Connection Manager

ADD MORE DETAIL.

Connection *getNewConnection(struct Server * this ,Connection *creator);
void closeConnection(Connection *);
void appendWriteBuf(Connection * this , const char *data, int len);

SOCKETFD connectToNextAddress(Connection * this);
SOCKETFD connectToAddress(Connection * this);

void closeMarkedConnection(struct Server * this ,Connection *conn);
int readConnection(Connection * this);
int writeConnection(Connection * this);
void nonBlockSocket(SOCKETFD webConn, unsigned long on);
void closePipeFds(Connection * this);

4.2.2 Parser

Parser is our traffic identifier module. Parser receives the raw packets from the connection
manager. A raw packet contains the HTTP data like what is shown in Section 4.1. After
parsing the packet all the required information will be put in a UID data structure. A UID
contains the following fields:

typedef struct UID {
 std::string urn;
 std::string ip_s;
 int port;
 long lRange;
 long rRange;
}UID;

Parser has a few subclasses for each p2p protocol. These subclasses are
GnutellaParser, KazaaParser and, etc. Other fields of parser class are
as follows:

public :
 std::string type; // which protocols it should parse
 // eg. Gnutella, KaZaA and, etc.

 parser(std::string); // constructor get the “type” as input
 ~parser();
 int getStream(std::string, int , CacheManager*);

private :

// put the UID in cache manager queue
 int sendToCache(UID*, CacheManager*);

UID *uid;

Page 9 of 10

4.2.3 Cache Manager

Cache manager is responsible for getting the requests from the parser and ask them from
the cache. The main data structure in cache manager is a queue which contains the
requests passed by the parser. This queue has a synchronized access because the parser
write in it and in the same time cache manager reads the data from it. Cache manager has a
“ run ” method which upon running, forks a “threadGetReq ” process. “threadGetReq ”
read the items from the request queue as long as the queue is not empty. If the queue does
not have any more items a semaphore wait will be called. The process would be locked
until it receives a signal from the parser, which means a new item has been pushed into the
queue.

Cache manager major methods and data types are:

public :
 std::queue<UID*> q;
 CacheManager(int , int);
 int setReq(UID*);
 int run();
 UID* getReq();
 pthread_mutex_t mut;
 sem_t sem;

private :
 Cache *cache;

4.2.4 Cache

Cache is an abstract class which contains different subclasses. Every cache object would
be polymorph to either LRUCache, LFUCache, P2PCache or, etc. A simple data type
defined in Cache is “Item”:

typedef struct {
 std::string name; // 32 char
 long piece_size; // in byte
 long item_size; // in byte
} Item;

Items are the objects should be pushed into the cache queue. This queue should be defined
as a “stl::deque” because we need to search within the contents of the queue to find the
requested objects. Cache functions with a few details are:

public :
Cache(std::string, int); // constructor take the path on the disk
 // and size of the cache in MB
int request(UID*); // receiving a request for an item
int download(UID*); // receiving a request for a file range
 // (the request response should be positive)
int upload(UID, int); // send the cache a downloaded file to store
int isFull(); // check if the cache is full

Page 10 of 10

private :
std::deque<*Item> q; // contains the Item objects
int size; // size of the cache in MB

4.2.4.1 LRU Cache

It is a cache with LRU replacement policy. It should be implemented with a simple FIFO
queue.

4.2.4.2 LFU Cache

It is a cache with LFU replacement policy. It should be implemented with a priority queue
(or a heap) in order to keep the most requested object on the top. In this way the less
popular items at the bottom of queue will be replaced by the new items.

4.2.4.3 P2P Cache

It used the P2P algorithm proposed in [4]. The implementation needs a heap to prioritize
the items.

4.2.5 Disk Manager

UNDER DEVELOPMENT.

4.2.6 Util, Error Handler and, Configure

All the utilities are put in the util.cc. config.cc would configure the parse, cache manager
and all the other module which need configuration. Error handler would deal with the
exceptions.

5 Todos

ADD THE ITEMS.

6 Reference

