Difference between revisions of "Private:progress-sharangi"

From NMSL
Line 2: Line 2:
 
=== January ===
 
=== January ===
 
Jan 27:
 
Jan 27:
* Conducted a survey of exiting results on SVC to AVC rewriting. While it has been reported that the re-writing process performs about 80% faster than the cascaded trans-coding process on a CPU, there are not many results on the feasibility of streaming implementation of the technique. Sablatschan et.al. have reported that the real time rewriting is not feasible for resolutions more than 480x320 videos using a quad core 3GHz processor. This leads to two directions for exploration: (1)explore the JSVM code to find better ways of doing the rewriting in parallel hardware and (2) using GOP distribution based approach on cloud to explore possibility of improving parallel performance. (1) has been extensively studied in the context of parallel encoders and decoders. (2) has scalability issues because it needs to buffer the GOPs before distributing them. One idea here is to distribute the pictures instead of GOPs which will increase the achievable degree of parallelism at the cost of increased picture management overhead. Another idea is to use the GOP based parallel rewriting at the server where the entire video is available. Then there will e no need to buffer the GoPs. Need to check whether this has been already done.
+
* Conducted a survey of exiting results on SVC to AVC rewriting. While it has been reported that the re-writing process performs about 80% faster than the cascaded trans-coding process on a CPU, there are not many results on the feasibility of streaming implementation of the technique. Sablatschan et.al. have reported that the real time rewriting is not feasible for resolutions more than 480x320 videos using a quad core 3GHz processor. This leads to two directions for exploration: (1)explore the JSVM code to find better ways of doing the rewriting in parallel hardware and (2) using GOP distribution based approach on cloud to explore possibility of improving parallel performance. (1) has been extensively studied in the context of parallel encoders and decoders. (2) has scalability issues because it needs to buffer the GOPs before distributing them.  
 +
** One idea here is to distribute the pictures instead of GOPs which will increase the achievable degree of parallelism at the cost of increased picture management overhead.  
 +
** Another idea is to use the GOP based parallel rewriting at the server where the entire video is available. Then there will e no need to buffer the GoPs. Need to check whether this has been already done.
 +
 
 +
*  Looked at some possibilities to implement scalable video streaming. Not many streaming server applications support SVC. Will look info DASH related implementations.
 +
 
 +
 
  
*  Looked at some possibilities to implement scalable video streaming. Looks like SVC did not get much traction at the server side either. Now looking at.
 
 
Jan 10:
 
Jan 10:
 
* Started exploring the problem of video trans-coding in cloud
 
* Started exploring the problem of video trans-coding in cloud

Revision as of 19:21, 26 January 2012

Spring 2012 (TA + RA)

January

Jan 27:

  • Conducted a survey of exiting results on SVC to AVC rewriting. While it has been reported that the re-writing process performs about 80% faster than the cascaded trans-coding process on a CPU, there are not many results on the feasibility of streaming implementation of the technique. Sablatschan et.al. have reported that the real time rewriting is not feasible for resolutions more than 480x320 videos using a quad core 3GHz processor. This leads to two directions for exploration: (1)explore the JSVM code to find better ways of doing the rewriting in parallel hardware and (2) using GOP distribution based approach on cloud to explore possibility of improving parallel performance. (1) has been extensively studied in the context of parallel encoders and decoders. (2) has scalability issues because it needs to buffer the GOPs before distributing them.
    • One idea here is to distribute the pictures instead of GOPs which will increase the achievable degree of parallelism at the cost of increased picture management overhead.
    • Another idea is to use the GOP based parallel rewriting at the server where the entire video is available. Then there will e no need to buffer the GoPs. Need to check whether this has been already done.
  • Looked at some possibilities to implement scalable video streaming. Not many streaming server applications support SVC. Will look info DASH related implementations.


Jan 10:

  • Started exploring the problem of video trans-coding in cloud
  • Started exploring the feasibility of implementing a cloud test-bed using Openstack.

Other

  • Courses: CMPT 886 (Multicore Systems)
  • TA : CMPT 371 , CMPT 379

Previous work


Spring 2011 (RA)

April

  • April 8
    • Working on the simulator for hybrid uni/multicast experiments. Taking longer than expected, may miss the MM'11 deadline

March

  • Mar 28:
    • Updated tech-report on hybrid multicast-unicast link
  • Mar 7:
    • Tech-report on hybrid multicast-unicast here
    • Working on the formulation for mobile patching scheme. Derived an expression for the bandwidth requirement and energy consumption of all-unicast and adaptive-patching schemes. Need to verify correctness analytically.
    • Working on numerical examples of the mobile patching scheme.
    • Documentation GENI-WiMAX project details.

Feb

  • Feb 28:
    • Reviewed the existing literature and identified the main challenges in adapting video streaming schemes to wireless networks. Identified four major schemes which seem promising : Skyscraper Broadcasting, Hierarchical Stream Merging, Harmonic Patching and Piggybacking.
    • Explored Skyscraper Broadcasting scheme and found it to be unsuitable.
    • Documentation of the survey.
  • Feb 11: Meeting with Saleh
    • Saleh to survey energy efficiency techniques in ad-hoc/sensor network domain and possible adaptation
    • Som to survey Internet VoD results and look for possible adaptation in the wireless domain
    • Meet on Feb 15 to discuss progress and decide on the first draft of one or two problems
    • (If time) Saleh to look at WiMAX model in OPNET to see if it can be used for experiments
  • Investigating wireless multimedia streaming in muticast/unicast mixed mode networks

Jan

  • Investigating cloud computing for video trans-coding, video mining and mobile video applications
  • Survey report on WiMAX/LTE testbed design options here
  • Report on current status of DVB-H testbed and design of EPG feature here

Fall 2010 (RA)

  • Poster/Demo: Efficient Multiplexing for Mobile Video Streaming (CONNECT'10)