Difference between revisions of "MASH: Adaptive Streaming of Multiview Videos over HTTP"
Line 45: | Line 45: | ||
|} | |} | ||
</center> | </center> | ||
+ | |||
+ | |||
+ | Figure 1 shows a high-level overview of MASH, which | ||
+ | runs at the client side. MASH combines the outputs of | ||
+ | the global and local view switching models to produce a | ||
+ | relative importance factor β i for each view V i . MASH also | ||
+ | constructs a buffer-rate function f i for each view V i , which | ||
+ | maps the current buffer occupancy to the segment quality | ||
+ | to be requested. The buffer-rate functions are dynamically | ||
+ | updated during the session; whenever a view switch happens. | ||
+ | As shown later, MASH strives to produce smooth and high | ||
+ | quality playback for all views, while not wasting bandwidth | ||
+ | by carefully prefetching views that will likely be watched. | ||
<!-- == Publications == --> | <!-- == Publications == --> |
Revision as of 14:39, 18 November 2016
People
- Khaled Diab
- Mohamed Hefeeda
Overview
Multiview videos offer unprecedented experience by allowing users to explore scenes from different angles and perspectives. Thus, such videos have been gaining substantial interest from major content providers such as Google and Facebook. Adaptive streaming of multiview videos is, however, challenging because of the Internet dynamics and the diversity of users interests and network conditions. To address this challenge, we propose a novel rate adaptation algorithm for multiview videos (called MASH). Streaming multiview videos is more user centric than single-view videos, because it heavily depends on how users interact with the different views. To efficiently support this interactivity, MASH constructs probabilistic view switching models that capture the switching behavior of the user in the current session, as well as the aggregate switching behavior across all previous sessions of the same video. MASH then utilizes these models to dynamically assign relative importance to different views. Furthermore, MASH uses a new buffer-based approach to request video segments of various views at different qualities, such that the quality of the streamed videos is maximized while the network bandwidth is not wasted. We have implemented a multiview video player and integrated MASH in it. We compare MASH versus the state-of-the-art algorithm used by YouTube for streaming multiview videos. Our experimental results show that MASH can produce much higher and smoother quality than the algorithm used by YouTube, while it is more efficient in using the network bandwidth. In addition, we conduct large- scale experiments with up to 100 concurrent multiview streaming sessions, and we show that MASH maintains fairness across competing sessions, and it does not overload the streaming server.
Details
Fig. 1: High-level overview of MASH. |
Figure 1 shows a high-level overview of MASH, which
runs at the client side. MASH combines the outputs of
the global and local view switching models to produce a
relative importance factor β i for each view V i . MASH also
constructs a buffer-rate function f i for each view V i , which
maps the current buffer occupancy to the segment quality
to be requested. The buffer-rate functions are dynamically
updated during the session; whenever a view switch happens.
As shown later, MASH strives to produce smooth and high
quality playback for all views, while not wasting bandwidth
by carefully prefetching views that will likely be watched.