Difference between revisions of "Private:psim"

From NMSL
Line 51: Line 51:
 
     Peer peer1; // one end
 
     Peer peer1; // one end
 
     Peer peer2; // the other
 
     Peer peer2; // the other
     int delay; // transmission delay in msec
+
     long delay; // transmission delay in msec
 +
    int e2eBW; // end-to-end bandwidth in bps
 
}
 
}
  

Revision as of 22:38, 4 March 2009

This page documents the development of a discrete event simulator for P2P video streaming applications. This simulator captures important features of data-driven video streaming systems. In particular, it is designed to evaluate: (i) the performance of various segment scheduling algorithms; (ii) the potential of network coding in multi-layer P2P video streaming systems.

Class Diagrams

  • use long for time/offset in msec, which has a rollover time 24.85 days

class Frame { // video frame, a layer of it, read from trace file
    int no; // serial number
    int layer; // layer number it belongs to, set to zero for nonscalable frame
    long deadlineOffset; // deadline offset compared to the start of the video, in msec
    int size; // frame size in bytes
}

class Segment { // packetized frames
    int no; // serial number
    Vector<Frame> frames; // reference to included frame
    int totalSize; // aggregate size in bytes
}

class Video { // a media file, shared by a group of peers
    String filename; // video trace file path and name
    Hashtable<int, Frame> frameTrace; // frames read from the trace file
    Hashtable<int, Segment> segmentTrace; // segments generated by the prepareSegments(...)
    void prepareSegments(int noFrame); // packetize frames into segment, 
        // noFrame indicates how many frames should we put in one segment; 
        // we might implement other packtization schemes later.
}

class Neighbor { // keep track of what my neighbor has done
    Peer peer; // peer instance, for accessing availability info
    int estimateRate; // estimated rate (maybe historical)
}

class Peer { // represent a running peer
    int ingressBW; // incoming bandwidth in bps
    int egressBW; // outgoing bandwidth in bps
    BitSet avail; // availability bufmap
    Vector<Neighbor> neighbors; // peers that we may send requests to 
}

class Group { // peers that have downloaded or want to download a Video
    Video video; // media shared among peers
    Vector<Peer> peers; // peers in this group
    void join(Peer peer); // adding a new peer into this group
    void leave(Peer peer); // removing a peer from this group
}

class Connection { // end to end network link between two peers
    Peer peer1; // one end
    Peer peer2; // the other
    long delay; // transmission delay in msec
    int e2eBW; // end-to-end bandwidth in bps
}

// XXX TODO XXX
class Event {
    long time; // when this event happens
    int type; // see below
    // 1. connect: peer 1 makes a connection to peer 2, and add each other into neighbors
    // 2. requestSent: a receiver sends a high-priority request message to a sender
    // 3. requestArrived: a request message gets to a sender
    // 4. dataSent: a sender sends a data segment
    // 5. dataArrived: a data segment arrives to a receiver
}

class EventQueue {
    SortedMap<Long, Event> queue; // events sorted on its time
    void handle(Event event); // process an event and update states accordingly
}