Private:pCDN:Peer Matching

From NMSL
Revision as of 12:32, 11 March 2009 by Ahmed (talk | contribs)

Important Dates

  • ACM MM: April 17, 2009
  • ACM MM (short): May 8, 2009

Previous (2008) Simulation

Experimental Setup

  • First, we get info of all the ASes in the world from Team CYRMU's IP to ASNum Mapping Project using netcat. Using this project, e get all ASes' numbers and their names along with the country they belong to. We filter to derive only CA ASes.
  • CAIDA provides dataset on inter-AS relationships among all ASes. We filter to derive inter-AS relationships within Canada using only CA ASes generated from step 1. This accounts for 375 ASes, 643 links (53 p2p, 5 s2s, 585 c2p).
  • Using these links and ASes, we generate a shortest policy path matrix which contains the shortest paths between any two ASes using the algorithm discussed in [Mao et al].
  • AT & T provides IP Range and AS number mapping. We use this dataset to extract only Canadian IP Ranges and corresponding ASes. We generate 84000 number of IPs belonging to these ASes; 10 each from every IP range – AS mapping.
  • Using IP-Geo database, we identify the latitude and longitude for each of these peers.
    • Maxmind IP-Geo database
  • We test 4 algorithms - AS Order, Geo-location, Random, Network - on a varied size of set of peers {100, 300, 500, 1000, 3000, 5000, 10000, 15000, 20000} randomly picked from 84000 peers generated in step 4. We run all 3 algorithms on the same set of peers and note insertion, lookup, deletion times as well as AS Hops. We repeat this experiment 5 times.
    • For testing of N peers, we take an array of 2N peers. First N peers are used for inserting and deleting. The rest N peers are used for searching. That is, we first insert N peers (from 1 to N), then lookup for next N peers (N+1 to 2N) and then delete N peers (from 1 to N). We note each individual time.
  • The simulation has been implemented in Java and the experiments have been performed on a 2GHz and 2GB RAM machine.

ISP Friendly Algorithm

Steps:

  • We populate IP to AS Map (IPASMap) using the IP Range and AS mapping present in AT & T dataset. This map can be used for searching an AS for a given IP.
  • We then load the pre-computed shortest policy path matrix (ShortestPathMatrix) which contains the shortest distance between every 2 individual ASes.
  • The data structure we use is a HashMap (ASMap) which contains ASNum as the key and the peerlist (the list of peers in that AS) corresponding to that AS.

Ideas

  • Verification of AS Shortest Paths
  • Experimental Setup
    • # Peers: {100, 300, 500, 1000, 3000, 5000, 8000}
    • # Senders: {2, 5, 10, 15, 20}
    • # Sessions: 1000
    • Algos: Random, Network, Geo, AS_Order(ISP-Friendly)
    • Metrics: Min, Avg, Max, Output
    • Output: Hops (Aggregate, P2P, C2P)
  • Search Efficiency:
    • If multiple shortest paths are existing, choose the least "cost" (s2s=0, p2p=1, c2p=2)
  • Check practicality
    • What kind of data we need initially and periodically
    • How often we need them
    • We implement the algorithm to determine AS relationships
  • Large graphs
    • Can we get the US & CA graph?
    • Can we optimize this matrix.
  • Usage of ISP + Network / Geolocation Algorithms
    • We reduce the number of IP hops
  • Diameter of the Canada's AS graph: 13 AS Hops


References and Links