Difference between revisions of "Network and Multimedia Systems Lab (NMSL)"

From NMSL
Line 3: Line 3:
 
'''Welcome to the Network and Multimedia Systems Lab (NMSL) at SFU!'''
 
'''Welcome to the Network and Multimedia Systems Lab (NMSL) at SFU!'''
  
We are interested in the broad areas of multimedia systems, machine learning, and computer networks. We develop algorithms and systems to efficiently distribute multimedia content to large-scale user communities over wired and wireless networks. We design machine learning models to address important and challenging problems in multimedia and network systems. In most of our works, we develop prototypes and testbeds to demonstrate the practicality of our solutions and show their performance in actual environments.  
+
The Network and Multimedia Systems Lab is led by [http://www.cs.sfu.ca/~mhefeeda/ Dr. Mohamed Hefeeda,] and it is located in the TASC1 building, room 8208.
  
The Network and Multimedia Systems Lab is led by [http://www.cs.sfu.ca/~mhefeeda/ Dr. Mohamed Hefeeda,] and it is located in the TASC1 building, room 8208.  
+
We are interested in the broad areas of multimedia systems, machine learning, and computer networks. We develop algorithms and systems to efficiently distribute multimedia content to large-scale user communities over wired and wireless networks. We design machine learning models to address important and challenging problems in multimedia and network systems. Our current research projects include hyperspectral imaging, datacenter networking, scalable multicast systems, cloud gaming, multimedia forensics, mobile multimedia, and AR/VR content processing and streaming. In most of our works, we develop prototypes and testbeds to demonstrate the practicality of our solutions and show their performance in actual environments.
  
Our current research projects include hyperspectral imaging, datacenter networking, scalable multicast systems, cloud gaming, multimedia forensics, mobile multimedia, and AR/VR content processing and streaming. Brief descriptions and links to some of our active projects are given below.  
+
At a high level, our current research interests include:
 +
 
 +
'''<big>Machine Learning for Multimedia:</big>''' We design learning-based solutions to address complex real-life problems that involve multiple modalities and entities, such as:   
 +
* '''''Multimedia Forensics:''''' detecting makeup attacks in biometric systems using generative adversarial models, fighting content forgery and deepfake using deep watermarking, and detecting food fraud using hyperspectral imaging and deep-learning models. 
 +
* '''''Content Enhancement:''''' removing reflection in images using unsupervised learning models, and up-sampling of rendered contents in cloud gaming using deep learning.
 +
 
 +
 
 +
'''<big>Multimedia Networking:</big>''' We design systems for efficient encoding, processing, and delivery of immersive (3D, AR, and VR) multimedia content, such as:
 +
* '''''Augmented and Virtual Reality (AR/VR):''''' automatically converting 2D videos to 3D and VR, and adaptively streaming AR/VR content to heterogeneous receivers.
 +
* '''''Cloud Gaming:''''' designing next-generation cloud gaming systems that optimize video quality, player engagement, and required computing and bandwidth resources. 
 +
 
 +
 
 +
'''<big>Network Protocols and Systems:</big>'''  We design protocols and systems to efficiently manage the resources of different networks and support the growing computation and communication demands of machine learning models, such as: 
 +
* '''''Datacenter Multicast:''''' designing scalable multicast systems for datacenters to support efficient group communications patterns common in training machine learning models. 
 +
* '''''ISP and CDN Traffic Management:''''' developing algorithms to support multicast traffic engineering in ISP and CDN networks.
 +
* '''''Datacenter Task Scheduling:''''' designing in-network, fine-grain, schedulers for micro-second scale tasks to support interactive workloads. 
 +
 
 +
 
 +
We publish papers in reputable conferences and journals. Most of our Journal Publications are in the premier IEEE and ACM transactions in our areas, such as IEEE Trans. on MM, ACM Trans. on MM, and IEEE/ACM Trans. on Networking. Similarly, most of our Conference Publications are in selective and high-quality conferences, including NSDI, MM, INFOCOM, ICNP, CVPR, MMSys, and SIGGRAPH.  
 +
 
 +
Brief descriptions and links to some of our active and concluded projects are given below.
  
 
== '''Immersive and Next-Generation Videos''' ==  
 
== '''Immersive and Next-Generation Videos''' ==  

Revision as of 14:07, 22 December 2022


Welcome to the Network and Multimedia Systems Lab (NMSL) at SFU!

The Network and Multimedia Systems Lab is led by Dr. Mohamed Hefeeda, and it is located in the TASC1 building, room 8208.

We are interested in the broad areas of multimedia systems, machine learning, and computer networks. We develop algorithms and systems to efficiently distribute multimedia content to large-scale user communities over wired and wireless networks. We design machine learning models to address important and challenging problems in multimedia and network systems. Our current research projects include hyperspectral imaging, datacenter networking, scalable multicast systems, cloud gaming, multimedia forensics, mobile multimedia, and AR/VR content processing and streaming. In most of our works, we develop prototypes and testbeds to demonstrate the practicality of our solutions and show their performance in actual environments.

At a high level, our current research interests include:

Machine Learning for Multimedia: We design learning-based solutions to address complex real-life problems that involve multiple modalities and entities, such as:

  • Multimedia Forensics: detecting makeup attacks in biometric systems using generative adversarial models, fighting content forgery and deepfake using deep watermarking, and detecting food fraud using hyperspectral imaging and deep-learning models.
  • Content Enhancement: removing reflection in images using unsupervised learning models, and up-sampling of rendered contents in cloud gaming using deep learning.


Multimedia Networking: We design systems for efficient encoding, processing, and delivery of immersive (3D, AR, and VR) multimedia content, such as:

  • Augmented and Virtual Reality (AR/VR): automatically converting 2D videos to 3D and VR, and adaptively streaming AR/VR content to heterogeneous receivers.
  • Cloud Gaming: designing next-generation cloud gaming systems that optimize video quality, player engagement, and required computing and bandwidth resources.


Network Protocols and Systems: We design protocols and systems to efficiently manage the resources of different networks and support the growing computation and communication demands of machine learning models, such as:

  • Datacenter Multicast: designing scalable multicast systems for datacenters to support efficient group communications patterns common in training machine learning models.
  • ISP and CDN Traffic Management: developing algorithms to support multicast traffic engineering in ISP and CDN networks.
  • Datacenter Task Scheduling: designing in-network, fine-grain, schedulers for micro-second scale tasks to support interactive workloads.


We publish papers in reputable conferences and journals. Most of our Journal Publications are in the premier IEEE and ACM transactions in our areas, such as IEEE Trans. on MM, ACM Trans. on MM, and IEEE/ACM Trans. on Networking. Similarly, most of our Conference Publications are in selective and high-quality conferences, including NSDI, MM, INFOCOM, ICNP, CVPR, MMSys, and SIGGRAPH.

Brief descriptions and links to some of our active and concluded projects are given below.

Immersive and Next-Generation Videos

With massive investments in the virtual reality (VR) hardware sector, companies encounter the challenge of providing VR content. The current solution of installing and operating VR camera rigs is expensive and not scalable. This project provides novel algorithms and methods to automatically convert standard broadcast 2D video streams to 3D and immersive VR streams of high quality. It also provides algorithms for adaptively streaming such complex multimedia content over the Internet to heterogeneous receivers.

Project Page ...

Hyperspectral Imaging

Hyperspectral cameras capture scenes in many wavelength bands across the spectrum, providing far more information than regular cameras that operate in the visible light range. For example, when observing a remote object (e.g., a car), signals in the visible light band can show the shape/color of the object, whereas signals in the infrared band can determine the temperature of that object (e.g., whether the car engine is on). Furthermore, signals in other bands can identify the surroundings of that object, e.g., whether the area has vegetation, the moisture level in the soil, and the presence and depth of water nearby. Current, commercially available, hyperspectral cameras can capture more than 200 bands, and thus produce huge amounts of high-dimensional data. Hyperspectral imaging can be useful in many commercial/civilian applications such as agricultural research, land-cover mapping, forest monitoring, and mapping of natural disasters, as well as military applications including remote sensing, surveillance, and identification of camouflaged objects. Despite the substantial potential of hyperspectral imaging, its utilization has been limited to a small subset of large-scale military and industrial applications. The long-term goal of this research is to enable wide adoption of hyperspectral imaging in many applications.

Project Page ...

Cloud Gaming

The goal of this project is to design and implement a comprehensive, end-to-end, framework for next-generation cloud gaming systems to optimize the video quality, bitrate, and end-to-end delay.

Project Page ...

CloudGaming.png

Scalable Multicast for ISP and Datacenter Networks

In this project, we design scalable multicast systems for general ISP networks and datacenter networks.

Project Page ...

Multimedia Forensics

Recent advances in machine learning have made it easier to create fake images and videos. Users and computing systems are facing increasing difficulties in differentiating forged contents from original ones. In this project, we focus on various aspects of detecting fake content, including detecting makeup attacks in biometrics systems and identifying forged videos and images.

Project Page ...

ISP and CDN Traffic Management

We develop algorithms and systems for future ISP and CDN architectures. This includes resource management of ISP-managed CDNs (often called Telco-CDN). We develop stateless and efficient protocols and tools to support multicast traffic engineering in the ISP network.

Concluded Projects

Please check this link for some of our previous projects.